
Annals of Software Engineering 3 (1997) 5–21 5

The meaning of requirements
Michael Jackson

101 Hamilton Terrace, London NW8 9QX, England
E-mail: jacksonma@attmail.com, mj@ic.ac.uk

We use the term requirements to denote what are often called functional require-
ments. Requirements are located in the environment, which is distinguished from the
machine to be built. A requirement is a condition over phenomena of the environment.
A specification is a restricted form of requirement, providing enough information for
the implementer to build the machine (by programming it) without further environment
knowledge. To describe requirements appropriately we must fit our descriptions into an
appropriate structure. This structure must respect the distinction between the machine
and the environment, and the distinction between those environment properties that are
given (indicative descriptions) and those that must be achieved by the machine (opta-
tive descriptions). Formalisation is a fundamental problem of requirements engineering.
Since most environments are parts of the physical world, and therefore informal, the
formalisation task is inescapable. Some techniques are discussed for tackling this task.
In particular, the use of designations is explained, and the distinction between definition
and assertion. By using the smallest possible set of designated terms, augmented by ap-
propriate definitions, the developer can create a narrow bridge between the environment
and its descriptions in the requirements. In this way a sufficiently faithful approximation
to the informal reality can be obtained.

1. Introduction

1.1. The importance of requirements

Reliance on computer-based systems, especially in safety-critical applications,
involves serious risks and dangers. Some failures result from relatively straightforward
programming errors, as in the case of the Therac-25 radiotherapy machine [Leveson
and Turner 1993]. Others result from a mismatch between the designed behaviour of
the computer part of the system and the effects in the environment that this designed
behaviour is intended to achieve. The computer hardware may perform correctly, and
the software may satisfy its specification; but the results are not what was intended,
and may be disastrous.

Many examples of this second kind of failure are reported in Neumann [1995].
Such failures are properly attributed to errors in the engineering of the system re-
quirements: the true requirements of the system were not correctly identified; or were
obscurely or imprecisely expressed; or were based on faulty reasoning about the en-
vironment or on faulty approximations to the reality of the phenomena and properties
of the environment.

 J.C. Baltzer AG, Science Publishers

6 M. Jackson, The meaning of requirements

The theme of this paper is that significant improvements in requirements en-
gineering can be obtained by careful attention to the meaning of requirement state-
ments. The paper explains a distinction between requirements and specifications,
and discusses techniques of formalising and describing requirements in a way that
allows them to be more clearly expressed and more easily understood and vali-
dated. The ideas underlying the techniques can be applied both to the engineering
of new requirements documents and to the analysis and understanding of existing
documents. The central goal of the paper is to offer useful insight into the prob-
lems of requirements description and understanding and how they can be successfully
addressed.

1.2. A concept of requirements

The term requirements has many meanings. Arguably, all of the following are
requirements:

• The computer must not weigh more than 0.25 Kg.

• The system must be completed by 1st January 1998.

• The programs must be written in Ada.

• The system specification must be formally accepted by the steering committee.

• The operator interface must be easy to learn.

• The system must produce a monthly report of outstanding debts.

• If passenger in the lift presses the open-doors button while the lift is stationary
at a floor, the doors should begin to open within 0.5 secs.

This paper is about requirements in a narrow sense, in which we would include at
most the last three of the examples above, but more probably only the last two. In
effect, we are concerned with what are often called functional requirements. How-
ever, we do also include under this heading such requirements as real-time response
[Jackson and Zave 1995] and those properties of operational safety that can be pre-
cisely stated in terms of system behaviour. Requirements of these kinds are func-
tional; but they are often excluded from the corpus of functional requirements for
no better reason than the technical difficulty of treating them in a sufficiently formal
way.

1.3. The machine and the environment

In this paper we are concerned with the description of requirements for systems
whose construction is primarily a software development task. That means that our
eventual goal is the provision and installation of a machine – all or part of one
or more computers programmed to behave in a way that ensures satisfaction of the
requirements. We do not construct the computer hardware; but in effect we construct
the machine because we construct the software that transforms a general-purpose
computer into the machine we need.

M. Jackson, The meaning of requirements 7

The requirements, however, do not directly concern the machine. They
concern the environment into which it will be installed. The environment is
the part of the world with which the machine will interact, in which the ef-
fects of the machine will be observed and evaluated. For a lift-control sys-
tem, the environment includes the floors served, the lift shaft, the motor and
winding gear, the doors, the lift car, the buttons and indicator lights, and the
passengers. For a theatre booking system it includes the theatres and their
seats, the audiences, credit cards used to buy tickets, the tickets themselves,
and the performances together with their postponements and cancellations. For
an avionics system it includes the pilot, the airframe and engines, the con-
trol surfaces, the surrounding atmosphere, the landing gear and the airport run-
ways.

The distinction between the environment and the machine is partly a distinction
between what is given and what is to be constructed. The terms are therefore to be
understood in a relative sense. For the developers of an operating system kernel, for
example, the kernel is to be constructed; with the hardware resources it uses it will
constitute the machine. What is given – and is therefore the environment – is the rest
of the same computer, and the population of programs running in it whose executions
will be supported and controlled by the kernel.

1.4. Shared phenomena

The machine can affect, and be affected by, the environment only because they
have some shared phenomena in common. That is, there are some events that are
events both in the machine and in the environment; and there are states that are states
of both.

In the lift system, for example, the machine is directly connected to the mo-
tor switch and to the sensors that detect the presence of the lift car at the floors.
A turn-motor-on event is an event both in the motor switch and in the machine.
So too is a set-motor-polarity-upwards event. The event will, very likely, be differ-
ently named in the machine’s programming language and in the switch manufacturer’s
equipment manual; but it is the same event. Similarly, the state up-sensor-2-on is
a state shared by a bit in the machine’s store and a sensor located in the lift shaft
at floor 2. On the other hand, the departure of a disgruntled passenger from a floor
lobby after waiting fruitlessly for the lift to arrive is a private event of the environ-
ment that is not shared with the machine; and the position of the read-write heads of
the disk drive is a private state of the machine that is not shared with the environ-
ment.

In considering shared phenomena, it is essential to distinguish between those
that are controlled by the machine and those that are controlled by the environment.
The turn-motor-on event and the set-motor-polarity-upwards event are controlled by
the machine. The value of the state up-sensor-2-on, by contrast, is controlled by the
environment.

8 M. Jackson, The meaning of requirements

2. Requirements and environment properties

2.1. Requirements are in the environment

Requirements, in the sense in which we are using the word, are located in the
environment. That is to say, they are conditions over the events and states of the
environment. The customer for the lift control system requires that when a button is
pressed the lift should come to the floor as requested. The customer for the theatre
reservations system requires that seats should not be double-booked, and that the best
seats at each price should be allocated first. Requirements, in this sense, can be stated
entirely without reference to the machine. It may be that some of the events and states
that are the subject of requirements are shared with the machine, but this is purely
accidental: what is essential is that they are phenomena of the environment.

The question immediately arises: how can the machine ensure satisfaction of
a requirement that concerns private phenomena of the environment, in which it does
not participate? The answer lies in the given properties of the environment. These
given properties constitute a nexus of constraints and causal chains. They guarantee
that by directly affecting shared phenomena the machine can indirectly affect private
phenomena of the environment; and that a machine possessing direct sensitivity to
shared phenomena will have an indirect sensitivity to certain private phenomena. This
general relationship between the environment and machine phenomena is pictured in
Fig. 1.

In the figure, the requirements are concerned only with private phenomena.
This is not necessary: requirements may be concerned also with shared phenomena.
But it is typical, because the customer for a system is usually interested in parts of
the environment that are some way from the machine in the causal chain.

Consider the example of the lift control system. The immediate phenomena of
movement of the lift car – its position and velocity – are not shared with the machine.
Yet it is a requirement that in certain circumstances the machine should cause the lift
car to move upwards to a certain floor and stop there. The environment has these
given properties (among others):

Figure 1.

M. Jackson, The meaning of requirements 9

• If the lift motor is switched on while its polarity is set in the upwards sense,
the car will start to rise within 0.2 seconds.

• The lift car is constrained to move vertically in the shaft from one floor to the
next.

• When the lift car is at any point between −8.25 inches and +0.25 inch of a
floor position, the up-sensor at that floor is on.

• If the lift motor is switched off while it is raising the car, the car will halt after
rising a further 8 inches.

By virtue of these properties, the machine can cause the car to rise to a floor
by controlling and sensing shared phenomena in the obvious way. It sets the motor
polarity upwards and switches the motor on (both of these events are under machine
control). It waits until the up-sensor at the floor flips on (this state change is under
the control of the environment), and then switches the motor off.

2.2. Optative and indicative

The full description of a requirement therefore consists of at least two parts.
We must describe the requirement itself – the desired condition over the phenomena of
the environment. And we must also describe the given properties of the environment
by virtue of which it will be possible for a machine, participating only in the shared
phenomena, to ensure that the requirement is satisfied.

This distinction between the desired and the given must be reflected in a sepa-
ration of descriptions:

• A customer requirement R expresses a condition over the phenomena of the
environment that we wish to make true by installing the machine.

• An environment assertion E expresses a condition over the phenomena of the
environment that we know to be true irrespective of the properties and behaviour
of the machine.

A traditional grammarian would say that the requirement R is in the optative
mood, expressing a wish; the environment assertion E is in the indicative mood,
expressing what is claimed to be a known truth.

2.3. The indicative context

Almost always, introducing a new system will change the environment in sig-
nificant ways. The environment assertion E describes the given properties of the
environment as they will be when the machine has been installed and the system is in
operation.

The distinction between indicative and optative is not therefore a distinction
between environment properties holding at one time and environment properties hold-
ing at a later time. It is, rather, the distinction between two classes of environment

10 M. Jackson, The meaning of requirements

properties holding at the same time: those that are guaranteed by the environment
itself, and those that are to be guaranteed by the machine.

In some problems, system operation may bring about environment changes that
are very hard to predict. This is notoriously true of traffic patterns and of human habits
and skills, but less subjective examples can also be found. The indicative properties of
interest to the requirements engineer are then the changed, not the original, properties.
A failure of prediction results in environment assertions that prove eventually to be
false.

The distinction between indicative and optative is applied here to descriptions
of the environment. But it applies also to descriptions of some agents [Feather 1987;
Dardenne et al. 1993]. An agent is an object which is a processor for some actions;
examples of agents are human beings, physical devices, or programs that exist or are
to be developed [Dardenne et al. 1993]. In all of these examples it is likely, if not
certain, that an individual agent will have indicative, given, properties, and also that it
will be required to exhibit some desired, optative, properties. The need to distinguish
the two is clear [Van Lamsweerde et al. 1995].

2.4. Why environment assertions are necessary

Although the optative description R and the indicative description E are both
relevant to requirements, it might seem at first sight that the work of the requirements
engineer as such is complete when the customer requirement R has been written.
From a narrow point of view this may indeed be true; but there are several reasons
why the formulation of the accompanying environment assertion E is also an integral
part of the requirements engineering task.

First, there is a simple human reason. Making an indicative description of
the environment and validating it by careful study and by discussion with domain
experts is a vital way of obtaining and demonstrating the necessary understanding of
the environment in which the customer requirements are located and in which they
make sense. This is a powerful and important reason, but we will not pursue it further
here.

Second, it is necessary to show that the requirement is satisfiable by some ma-
chine. It may be that the environment does not embody enough constraints and enough
causal chains to connect the shared phenomena appropriately to the phenomena that
are of direct interest to the customer. In that case, the problem is not properly a
software development problem: it is a problem of the kind that we may call environ-
ment engineering. For example, suppose that the customer for the lift system has the
following unusual additional requirement:

• If a passenger in the lift requests travel to a floor, but then leaves the lift before
that floor is reached, the request should be cancelled.

This requirement is easily formalised, but its satisfaction can not be ensured by
any machine in an environment of conventional lift equipment. The shared phenomena

M. Jackson, The meaning of requirements 11

are insufficient to allow the machine, however indirectly, to identify the individual
passenger who participates in a departure event or in a request event. Satisfaction of
this requirement, therefore, will demand a substantial change or enhancement of the
environment. We regard this as taking us outside our chosen realm of requirements
engineering for software development.

2.5. Requirements and specifications

To show that the requirements are satisfiable by some machine we derive a
specification of the machine. A specification S is an optative description of a condition
over the shared phenomena at the interface between the machine and the environment.
A machine satisfying S will ensure satisfaction of the requirement. That is,

E ,S ` R.

If a machine whose behaviour satisfies S is installed in the environment, and the
environment has the properties described in E , then the environment will exhibit the
properties described in R.

The relationship among E , S and R is an entailment, not an implication. The
implication

E ∧ S ⇒ R

(unless it were a tautology) would itself be a further assertion about the environment,
in addition to the assertion E . But the essence of the relationship is precisely that R
can be deduced from E and S with no further knowledge of the environment.

2.6. The nature of a specification

A specification forms a bridge between requirements engineering, which is con-
cerned with the environment, and software engineering, which is concerned with the
machine. The distinction is of practical importance, because it clarifies the differing
responsibilities of those whose expertise lies in acquiring and using knowledge of
the environment – often called application or domain knowledge – and those whose
expertise lies in the invention, design, and construction of computer software. In prin-
ciple, a specification allows requirements engineers to reason about the requirement
and its satisfaction in the environment, without mentioning the properties of the ma-
chine. It also allows programmers to reason about the software and its adequacy for
its purpose without mentioning either the environment properties or the customer’s
requirement. This is why it has traditionally represented the intermediate product
between requirements and programs.

To serve its purpose, a specification must be subject to a further constraint
beyond its restriction to shared phenomena. Its satisfiability must be demonstrable
without appeal to properties of the environment. That means that by appeal only to
logic and to the properties of the general-purpose computer a specification must be

12 M. Jackson, The meaning of requirements

formally refinable to a conjunction of liveness and safety descriptions respectively of
the form:

“whenever c is true cause e to occur within time t”

and:
“whenever c is true do not permit e to occur”

in both of which the condition c can be evaluated entirely in terms of the past history
of shared phenomena, and e is a shared event or state transition that is controlled by
the machine. Whether the real-time constraint t can be satisfied will depend on the
properties – in particular, the speed – of the computer.

3. Description and the environment

3.1. Formalisation and informal environments

For the programmer, the computer can be treated as a formal system. Although
the underlying physical reality is inevitably informal, the computer has been carefully
constructed so that for practical purposes we may rely on the formal description of
its behaviour given in the programming manual. When we read: “Execution of the
instruction 21,1,5 causes register R1 to be set to the value held in register R5”, there
is no room for doubt about the meanings of the terms used or about the validity of the
statement. The task of establishing a reliable phenomenology for the computer has
already been performed.

The environment, by contrast, is usually a part of the physical world that has
not been formalised. We normally speak of it in natural language, with all its atten-
dant ambiguities and uncertainties. Terms such as ‘sale’ or ‘payment’ have different
meanings for different speakers, and even for one speaker at different times. Even
where there is no ambiguity about the intended meaning of a term, there will be many
cases in which it is hard to decide whether or not the term should be applied. Further-
more, there is an unbounded collection of considerations that may be relevant to any
proposed statement; as a result, any general statement about the environment may be
subject to an unlimited number of exceptions and special cases.

There is, of course, one part of the environment that has been formalised: the
phenomena shared with the machine. We may be unsure whether one car can be said to
have hit another in a traffic incident, but there is no uncertainty whether a particular key
was hit on a computer keyboard. The keyboard circuitry and the associated software
are engineered precisely to avoid doubt in the question by providing an objective
criterion. This is why it is reasonable to demand formality in specifications, and to
see no fundamental difficulty in meeting that demand.

In requirements, by contrast, the informal nature of the environment does
present a fundamental difficulty. The informality must be tamed if we are to de-
scribe the requirements intelligibly and to reason reliably about their satisfaction by
the interaction of the machine and the environment.

M. Jackson, The meaning of requirements 13

3.2. Ground terms

The first need is to establish an adequate set of ground terms for our descrip-
tions. Ground terms for a description are the terms that fix the relationship between
the description and what it describes. For example, if we wish to describe human bi-
ological relationships we may use many terms such as mother, father, uncle, brother,
aunt, niece, grand-daughter, second cousin, and so on. But a sufficient set of ground
terms is {male, female, parent}. All the other terms can be defined on the basis of
these three, and all our descriptions can then be understood if these three ground terms
are understood.

A requirements description, whether indicative or optative, expresses a rela-
tionship over environment phenomena. It will not be understandable unless it is made
unambiguously clear what phenomena are denoted by each term of the description, and
how occurrences of those phenomena are to be distinguished from non-occurrences.
The uncertainties of natural language are not dispelled merely by resolving apparent
conflicts between competing descriptions or viewpoints [Easterbrook 1993; Easter-
brook and Nuseibeh 1995]. Even when all conflicts have been resolved, it is still
necessary to provide an unambiguous mapping between formal terms and informal
phenomena.

The fundamental technique in providing this unambiguous mapping is to choose
as ground terms only those phenomena that admit of sufficiently reliable and unam-
biguous recognition. It is a serious mistake to assume that because a noun or verb or
adjective is conveniently used in informal natural language discourse it must necessar-
ily denote some phenomenon or class of phenomena that can be treated as a ground
term in discourse about the environment.

Consider, for example, the development of a system for managing airline ser-
vices. It may seem natural to assume that flight may be treated as a ground term,
because it is a term commonly used in informal discourse about airline services. But
the treatment of flights as recognisable and distinct individuals is fraught with diffi-
culty. Is a flight that is cancelled a flight? Can one flight be split into two legs flown
by different planes? Can two flights be combined in one? Can a heavily used shuttle
flight be simultaneously flown by two different planes? The difficulty of answering
these questions indicates that we should not attempt in this context to treat flights as
ground terms.

3.3. Designations

Each choice of a ground term must be explicitly made and explicitly captured.
The appropriate tool for this purpose is a designation [Jackson and Zave 1993; Jackson
1995]. A designation associates a formal ground term, such as a predicate, with the
denoted phenomena, such as an event or entity class or a relationship over events or
entities. For example, we might write the designation

Mother(x, y) ∼= x is the genetic mother of y.

14 M. Jackson, The meaning of requirements

The left-hand side is the formal term; in this case the predicate Mother(x, y). The
right-hand side is a – necessarily – informal recognition rule by which the designated
phenomena may be unambiguously recognised. Mother(x, y) is true if and only if x
is the genetic mother of y.

Because the natural world is informal, the recognition rule in a designation is
inevitably imperfect. However carefully it may be formulated, there may always be
hard cases in which we are uncertain whether or not the rule applies. But we must
limit this uncertainty to an acceptable level.

First, we must write the recognition rules with great care. If we had written

Mother(x, y) ∼= x is the mother of y,

we would have left the reader uncertain whether we meant to include stepmothers and
adoptive mothers. If we had written

Mother(x, y) ∼= x is the natural mother of y,

we would have failed to clarify our intention in cases of surrogate motherhood. Of
course, even writing

Mother(x, y) ∼= x is the genetic mother of y

may be insufficient in some nightmare future in which genetic engineering makes it
possible to combine in one child the genetic inheritance of more than one mother.

Second, we must recognise that while the recognition rule can not be perfect it
must be good enough for the world as it is and as it will be during the operational life-
time of the system. Appropriate choice of designated phenomena, therefore, depends
heavily on the environment and system for which they are chosen. The designation

Bird(b) ∼= b is a bird

may be appropriate to a system whose environment is a children’s zoo. But it would
not do at all for a system concerned with the study of evolution.

3.4. The narrow bridge

Appropriately chosen and carefully written designations provide a strong and
narrow bridge between the environment and its description in requirements. They
define the scope of a requirement, in the sense of bounding the parts and aspects of
the environment with which the requirement is concerned. They clarify the meaning of
the descriptions that use them, and allow those descriptions to be subjected to the test
of falsifiability. For the requirements engineer who has written explicit designations
there can be no refuge in the rejoinder “Well, it all depends on what you mean by X”.

Designations also allow us to reason more reliably about the environment —
as we must if we are to convince ourselves that satisfaction of our specification will

M. Jackson, The meaning of requirements 15

guarantee satisfaction of the requirements. However good our designations, the infor-
mality of the world introduces an inevitable error factor into the mapping between the
informal reality and its formal description. The accuracy of our claim that the system
will satisfy its requirements can not be better than this error factor. By confining our-
selves to ground terms with the most reliable possible recognition rules, we minimise
the error factor, and consequently minimise also the error in the results of our formal
reasoning based on that mapping.

3.5. The use of definition

Limiting our designations in this way may at first sight appear to be inconve-
niently restrictive. The convenience of natural language locutions is not accidental,
and we need to be able to extend the terminology of our descriptions beyond the
narrow confines of reliable designations. The appropriate tool here is formal defini-
tion. We define new terms on the basis of terms previously designated or previously
formally defined.

These formal definitions add nothing to the bridge between the reality and its
description; nor do they constitute fresh assertions about the reality. They merely
provide more convenient terminology for saying what we could have said less con-
veniently without them. They may be thought of as abbreviations [Woodcock and
Davies 1996]: descriptions using the formally defined terms can always be rewritten
to use only the designated ground terms on which they are ultimately based. It follows
[Woodcock and Davies 1996] that these formal definitions may not be recursive.

The difference between designation and definition can be clearly seen from a
simple example. Suppose that for an inventory system we have designated an event
class:

WidgetMvmt(t, e,m) ∼= In event e a stock movement of m widgets occurs at time t.

WidgetMvmt(t, e,m) is an observable phenomenon, recognisable if and only if an
event e occurs at time t and involves the receipt (m > 0) or issue (m < 0) of
|m| widgets into or out of the warehouse. In an inventory system we will surely be
interested in the question: How many widgets should we have in stock? We may
write a definition.

ExpectedWidgetStock(t, s)

def
= s =

(∑
tm, e,m |WidgetMvmt(tm, e,m) ∧ tm < t •m

)
.

ExpectedWidgetStock(t, s) is defined to mean that s is the cumulative sum of (positive
and negative) movement quantities m, the sum being taken over all possible choices
of tm, e, and m for which WidgetMvmt(tm, e,m) is true and tm < t. That is, s is
the sum of the movement quantities in all WidgetMvmt events occuring before t.

16 M. Jackson, The meaning of requirements

ExpectedWidgetStock(t, s) is not designated; it is not a directly observable phe-
nomenon at all. It is simply defined in terms of WidgetMvmt events, which are the
only observable phenomena mentioned so far. Any assertion about ExpectedWidget-
Stock is immediately translatable into an assertion about WidgetMvmt events. The
definition adds nothing to our capacity to describe the environment – merely to the
convenience of our descriptions.

Now suppose that we want to be able to answer the question: How many
widgets do we actually have in stock? We need to designate a fresh phenomenon:

WidgetStock(t, s) ∼= At time t the number of widgets in the warehouse is s.

WidgetStock(t, s) is an independently observable phenomenon, recognisable as the
presence of s widgets in the warehouse at time t. The designation adds significantly
to our capacity to describe the environment: using WidgetStock(t, s), we can make
assertions that can not be made without it. For example, we can assert that the
actual stock of widgets changes only by stock movement events – there is no theft or
evaporation, and no spontaneous creation of widgets:

∀t, s •WidgetStock(t, s)⇔ ExpectedWidgetStock(t, s).

For any choice of t and s, the actual stock at time t is s if and only if the expected
stock at time t is s. This assertion is equivalent to the less convenient

∀t, s • WidgetStock(t, s)

⇔ s =
(∑

tm, e,m |WidgetMvmt(tm, e,m) ∧ tm < t •m
)
.

3.6. Defining individuals

The definition of ExpectedWidgetStock(t, s) increases the convenience of our
descriptions by adding a new predicate symbol. Often, we want to add terminology
that seems to involve new individuals.

Suppose that in describing airline operations we have designated:

Plane(p)∼= p is a plane,

Land(e, p, t) ∼= In event e the plane p lands at time t,

TakeOff(e, p, t) ∼= In event e the plane p takes off at time t.

These designations involve individuals that are planes, individuals that are points in
time, and individuals that are events. These are distinct individuals, in the sense that
we can reliably and unambiguously distinguish one plane from another, one event from
another, and one point in time from another. Now we wish to deal with some of the
considerations that make flight a useful term in talking about airline operations. We
rejected flight earlier, on the grounds that there are no clear criteria for distinguishing

M. Jackson, The meaning of requirements 17

one flight from another, and that it is therefore impossible to designate the term. That
rejection still holds. But we can use definition to build up a set of identifiers and
defined predicates that will serve at least some of our purposes.

For example, we can define the notion of a trip as it applies to air travel. An
appropriate definition is(

i • Trip(i) ∧ TripPlane(p, i) ∧ StartsTrip(e, i) ∧ FinishesTrip(f, i)
)

def
=
(
p, e, f, t1, t2 | Plane(p) ∧ TakeOff(e, p, t1) ∧ Land(f, p, t2) ∧ t1 < t2

∧¬
(
∃g, t3 •

(
Land(g, p, t3) ∧ t1 < t3 < t2

)))
.

The definition defines both the individual i and the four predicates – Trip, TripPlane,
StartsTrip and FinishesTrip – in which i may appear as an argument. There is a
defined individual i for each distinct choice of p, e, f , t1 and t2 such that Plane(p)
and TakeOff(e, p, t1) and Land(f, p, t2) are all true, and t1 is earlier than t2, and no
Land event of the same plane intervenes between e and f .

The four predicates Trip, TripPlane, StartsTrip and FinishesTrip are defined to
have their obvious meanings; i is a trip; p is the plane involved in the trip; e and f
are the events that start and end the trip. Intuitively, any matching pair of take-off and
land events of the same plane defines a unique trip started by the take-off event and
finished by the land event.

The values of the identifier i for which Trip(i) is true by this definition do
not denote independently observable individuals in the environment. They can not,
therefore, appear as arguments in designated terms. But they can be used both in
descriptions and in further definitions. For example,

TripStartTime(i, t)
def
= Trip(i) ∧

(
∃e, p • StartsTrip(e, i) ∧ TakeOff(e, p, t)

)
.

The trip start time is defined to be the time of its starting take-off event.

3.7. Using definition to classify phenomena

Introduction of a general term, whether by designation or by definition, implies
a classification of phenomena. Some events are take-off events of planes, and the
others are not. It is only because we can classify that we can describe anything at all.

But we may reasonably expect that different purposes will demand different
classifications. For example, in describing the environment of a PABX (Private Auto-
matic Branch Exchange) for a telephone system, we may designate these phenomena
(among others) as

Ringing(p, t)∼= Telephone p is ringing at time t,

OffHook(e, p, t)∼= In event e telephone p goes offhook at time t,

18 M. Jackson, The meaning of requirements

SpeakerOn(e, p, t)

∼= In event e the speaker button of telephone p is pressed at time t.

But in describing the requirements for a telephone system we may well want to form
other, different, classifications of the same environment phenomena. We can do so by
making suitable definitions, such as

Answer(e, p, t) def
=
(
Ringing(p, t) ∧

(
OffHook(e, p, t) ∨ SpeakerOn(e, p, t)

))
.

An answer event is defined to be a telephone event that occurs at a time when the
phone is ringing and is either an offhook event or an event in which the speaker button
is pressed.

In principle there is no limit to the number of classes to which an individual
may belong, and no reason to try to force the classes into a hierarchical structure. Not
all answer events are offhook events; and not all offhook events are answer events.

3.8. The discipline of designation and definition

The two tools, designation and definition, underpin an essential discipline in
description. Every term used in every description must be either designated or de-
fined, and its meaning must therefore be directly or indirectly grounded in reliable
observation of the environment.

This discipline is a safeguard against some of the more insidious difficulties of
requirements description. It inhibits the unthinking introduction of undefined terms
that can be used with different intended meanings in different descriptions, or with
meanings that subsequently prove hard to define unambiguously. In this way it con-
tributes to the prevention of ontological drift [Robinson and Bannon 1991], in which
as abstractions pass through the different subgroups of an organisation they are inter-
preted in terms of that particular community’s set of meanings [Easterbrook 1993].

More generally, the benefit of the discipline is simply that with it we can know
what our descriptions mean, and without it we can not. Readers of descriptions that
lack explicit designations are compelled to treat the descriptions themselves as if
they were designations. A rough initial idea of the meaning of a term, suggested by
its natural language interpretation, is fleshed out by testing it against the assertions
contained in the descriptions that have been read so far. If the description fits the
putative meaning, that is a partial confirmation; if not, it is the meaning that must
be adjusted. As the reading of the descriptions proceeds, this process of testing and
adjusting interpretations must be carried out, more or less simultaneously, for every
term that should have been designated.

Evidently, such a process precludes any critical check of the truth of the asser-
tions encountered. An assertion that seems false leads merely to adjusting the reader’s
interpretation of the terms used, rather than to challenging the assertion itself. Only
when the possibilities of interpretation are exhausted can the assertion be challenged.

M. Jackson, The meaning of requirements 19

This will not occur until either a formal contradiction is discovered or the interpretation
of a term is strained to a point that is no longer credible.

The misunderstanding of requirements that can arise from a lack of explicit
designations can have serious consequences. For example, a contributory cause to
the 1979 accident at the Three Mile Island nuclear power plant was a control panel
indication that a certain valve was shut when in fact it was open [Ferguson 1992].
The requirement formally expressible as

IndicateValveShut(v, t)⇔ ValveShut(v, t)

– at time t the indicator for valve v must show that it is shut if and only if the valve is
shut at that time – was wrongly implemented. The indicator in fact showed whether
the current was on or off in the electromagnet that actuated the valve, not whether the
valve itself was open or shut. The absence of a clear and explicit designation for the
term ValveShut(v, t) allowed the mistake to be easily made.

3.9. Support for the discipline

To support this discipline, the notations and formalisms used must distinguish
clearly between designated and defined terms, and between definitions and assertions.
The meaning of the definition

ExpectedWidgetStock(t, s)

def
= s =

(∑
tm, e,m |WidgetMvmt(tm, e,m) ∧ tm < t • m

)
is quite different from that of the assertion

WidgetStock(t, s)⇔ s =
(∑

tm, e,m |WidgetMvmt(tm, e,m) ∧ tm < t •m
)
.

The difference is clearly indicated by the different symbols (def
= and ⇔), and by the

fact that the predicate WidgetStock is designated, while ExpectedWidgetStock is not.
By contrast, the distinction between definition and assertion is less clear in a

language such as Z. In a commonly adopted style of using the language [Wordsworth
1992] there is no easy and convenient way to distinguish these two schemas:

lent: P Book
lent to: Book → Person

Books Lent

lent = dom lent to

enrolled: P Child
assigned: Desk → Child

Desks Assigned

enrolled = rng assigned

The schema on the left, we may reasonably suppose, is intended as a definition.
It defines the term lent on the basis of the (implicitly designated) terms Book, Person,
and lent to. A book is lent is defined to mean that there is some person it has been
lent to. But the description on the right is intended as an environment assertion. The
terms Child, Desk, enrolled and assigned are all implicitly designated. The assertion
is that no enrolled child is without an assigned desk.

20 M. Jackson, The meaning of requirements

3.10. Conclusion

Requirements engineering is not a branch of pure mathematics or logic: the
meaning and applicability of an environment description depends crucially on its re-
liable interpretation in the environment. In requirements engineering we may not
postpone interpretation until description is complete: without its interpretation a de-
scription at any level is literally meaningless.

The techniques discussed in this paper have been presented in terms of de-
scriptions, but their underlying ideas are concerned with the phenomena of the system
environment and how causal and constraint relationships among those phenomena may
be reliably approximated and formalised. These ideas appear capable of application
in many domains, especially those in which safety-critical systems are deployed.

Acknowledgements

The ideas expressed in this paper have been discussed and refined in joint
work with Pamela Zave and Daniel Jackson. Thanks are also due to the anonymous
reviewers, two of whom made constructive and helpful comments on an earlier draft.

References

Dardenne, A., A. van Lamsweerde, and S. Fickas (1993), “Goal-Directed Requirements Acquisition,”
Science of Computer Programming 20, 1, 3–50.

Easterbrook, S. (1993), “Domain Modelling with Hierarchies of Alternative Viewpoints,” In Proceedings
of the IEEE International Symposium on Requirements Engineering, IEEE Computer Society Press,
Los Alamitos, CA, pp. 65–72.

Easterbrook, S. and B. Nuseibeh (1995), “Managing Inconsistencies in an Evolving Specification,” In Pro-
ceedings of the Second IEEE International Symposium on Requirements Engineering, IEEE Computer
Society Press, Los Alamitos, CA, pp. 48–55.

Feather, M. S. (1987), “Language Support for the Specification and Development of Composite Systems,”
ACM Transactions on Programming Languages and Systems 9, 2, 198–234.

Ferguson, E. S. (1992), Engineering and the Mind’s Eye, MIT Press, Cambridge, MA and London, UK.
Jackson, M. (1995), Software Requirements and Specifications, Addison-Wesley, Reading, MA.
Jackson, M. and P. Zave (1993), “Domain Descriptions,” In Proceedings of the Second IEEE Interna-

tional Symposium on Requirements Engineering, IEEE Computer Society Press, Los Alamitos, CA,
pp. 56–64.

Jackson, M. and P. Zave (1995), “Deriving Specifications from Requirements: An Example,” In Pro-
ceedings of the 17th International Conference on Software Engineering, ACM and IEEE Computer
Society Press, Los Alamitos, CA, pp. 15–24.

Leveson, N. G. and C. S. Turner (1993), “An Investigation of the Therac-25 Accidents,” IEEE Computer
26, 7, 18–41.

Neumann, P. (1995), Computer-Related Risks, Addison-Wesley, Reading, MA.
Robinson, M. and L. Bannon (1991), “Questioning Representations,” In Proceedings of the Second Eu-

ropean Conference on Computer-Supported Cooperative Work ECSCW-91, L. Bannon, M. Robinson,
and K. Schmidt, Eds., Kluwer, Dordrecht.

M. Jackson, The meaning of requirements 21

Van Lamsweerde, A., R. Darimont, and P. Massonet (1995), “Goal-Directed Elaboration of Requirements
for a Meeting Scheduler: Problems and Lessons Learnt,” In Proceedings of the Second IEEE Interna-
tional Symposium on Requirements Engineering, IEEE Computer Society Press, Los Alamitos, CA,
pp. 194–203.

Woodcock, J. and J. Davies (1996), Using Z: Specification, Refinement and Proof, Prentice-Hall.
Wordsworth, J. B. (1992), Software Development with Z: A Practical Approach to Formal Methods in

Software Engineering, Addison-Wesley.

